
Flight Speeds among Bird Species:
Allometric and Phylogenetic Effects
Thomas Alerstam

1*
, Mikael Rosén

1
, Johan Bäckman
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Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental
aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as
(body mass)1/6 and (wing loading)1/2 among bird species. To test these scaling rules and the general importance of
mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals
or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the
birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, Ue) of 138 species, ranging 0.01–10
kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing
loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses
based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of
evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing
loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained
through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but
additional factors are required to fully explain the small scaling exponent of Ue in relation to wing loading.
Furthermore, mass and wing loading accounted for only a limited proportion of the variation in Ue. Phylogeny was a
powerful factor, in combination with wing loading, to account for the variation in Ue. These results demonstrate that
functional flight adaptations and constraints associated with different evolutionary lineages have an important
influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing
loading.

Citation: Alerstam T, Rosén M, Bäckman J, Ericson PGP, Hellgren O (2007) Flight speeds among bird species: Allometric and phylogenetic effects. PLoS Biol 5(8): e197. doi:10.
1371/journal.pbio.0050197

Introduction

According to fundamental aerodynamics the lift force (L)
generated on a wing is related to flight speed (U) as:

L ¼ 1
2
� q � CL � S � U2 ð1Þ

where q is air density, S is wing area, and CL is the lift
coefficient [1–3]. In horizontal cruising flight L balances the
weight (m3 g), and aircraft as well as animals are expected to
fly at or near a value of CL giving the maximum efficient lift-
drag ratio. Provided that this value of CL is about equal
among bird species (as required for dynamical similarity) [1],
it follows that cruising flight speed among bird species is
expected to scale with body mass and wing loading (Q¼m3 g/
S) as U } m1/6 and U } Q1/2, respectively (with the former
proportionality based also on the assumption of geometrical
similarity; i.e., S varies with m2/3). These scaling rules have also
been used to compare general speeds of a wide range of
flyers, from the smallest insects to the largest aircraft [1,4–6].

In the absence of reliable measurements of the airspeed of
different bird species in long-distance cruising (migration)
flight, theoretically derived flight speeds for species of
different mass and wing morphology have been used to
explore these scaling rules [4,5,7–10]. Deviations from the
expected scaling exponent in relation to mass have been
found because of departures from geometrical similarity—
larger birds often tend to have proportionately larger wing
area and span [2,5,9–11]. There are additional possible
reasons, besides departure from geometrical similarity, why

bird flight speeds may deviate from the aerodynamic scaling
rules. Flight adaptations related to the birds’ ecology and
phylogeny may have consequences for their cruising flight
speeds, and different flight modes (continuous or intermit-
tent flapping) may constrain the birds’ speeds [2,10].
A full evaluation of the applicability of aerodynamic

scaling rules must be based, not on theoretically derived
speeds, but on empirical measurements of airspeeds of a wide
variety of bird species in natural cruising flight. Here, we
present tracking radar measurements of flight speeds of 138
species from six main monophyletic groups [12], which were
analysed in relation to biometry (m, S, and wingspan b) and
evolutionary origin (as reflected by phylogenetic group). All
speeds reported here refer to flapping flight at cruising
speeds of birds on migration. By restricting the analysis to
migration flight we expect the birds to fly at an airspeed close
to that associated with maximum lift-drag ratio [13]. All
speeds designate equivalent airspeeds (Ue) corrected to sea
level air density [14,15].
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Results

Relationships between Ue and m and Q for all different
species are plotted in Figure 1, with the lines showing the
allometric relations according to reduced major axis regres-
sions (Table 1). Mean airspeeds among the 138 species ranged
between 8 and 23 m/s. Birds of prey, songbirds, swifts, gulls,
terns, and herons had flight speeds in the lower part of this
range, while pigeons, some of the waders, divers, swans, geese,
and ducks were fast flyers in the range 15–20 m/s.
Cormorants, cranes, and skuas were among the species flying
at intermediary speeds, about 15 m/s. The diving ducks
reached the fastest mean speeds in our sample, with several
species exceeding 20 m/s, up to 23 m/s (Protocol S1).

The scaling analyses at the species level are robust against
possible biases from few tracks per species and from within-
species variation in speed (see Materials and Methods and
Table 1). Because species do not represent an evolutionary
independent data point, we also calculated scaling exponents
by analysis of independent phylogenetic contrasts [16]
according to the procedure and phylogeny [12] presented in
Protocol S2. We used the well-resolved molecular phylogeny
by Ericson et al. [12] for our phylogenetic analyses and
classifications. The scaling results corrected for phylogenetic
dependence agreed very closely with the exponents calcu-
lated on the species level (Table 1), demonstrating that the
scaling exponents for Ue in relation to m as well as Q (0.12 and
0.32, respectively; phylogenetic contrast analysis) were small-
er than the predicted values of 0.17 and 0.50, respectively. For
the scaling of Ue versus m, the difference from the predicted
value was at the significance level of 0.05 for the phylogenetic
contrasts analysis, and the difference was not statistically
significant for the sample of speeds adjusted for within-
species variation (Table 1).

Within the different main phylogenetic groups (species
level) as defined in Protocol S1 (see Figure 1), the scaling
exponents of Ue in relation to m were significantly smaller
than the predicted value of 0.17 among two of the groups.
Swans/geese/ducks showed a remarkable negative scaling
exponent of �0.15 (difference from prediction t ¼ 13.40,

degrees of freedom (df) ¼ 25, and p , 0.0001), and falcons/
crows/songbirds showed a scaling exponent of 0.08 that was
clearly smaller than expected (t ¼ 6.01, df ¼ 37, and p ,

0.0001). For the other four groups, the scaling exponents
ranged between 0.12 and 0.20 and were not significantly
different from the predicted value (p . 0.2). The correspond-
ing scaling exponents of Ue in relation to Q differed
significantly from the predicted value of 0.5 among three of
the groups, flamingo/pigeons/swifts (exponent 0.28, t¼3.22, df
¼ 5, and p ¼ 0.023), divers/cormorants/pelican/herons/storks/
crane (exponent 0.36, t ¼ 2.59, df ¼ 15, and p ¼ 0.021), and
falcons/crows/songbirds (exponent 0.28, t¼4.88, df¼37, and p
, 0.0001). For the remaining three groups, the scaling
exponents ranged between 0.42 and 0.54 and were not
significantly different from the predicted value (p . 0.4).
To determine if there were geometrical differences in wing

shape associated with differences in mass and wing loading,
we investigated whether or not aspect ratio scaled signifi-
cantly with m and Q. Aspect ratio is a dimensionless measure
of wing shape (¼b2/S). We found significant departures from
isometry with aspect ratio scaling positively to m as well as Q
(p , 0.01 on the basis of all species [n¼ 129] and p , 0.05 on
the basis of independent phylogenetic contrasts [n ¼ 17], for
both scaling relationships).
We also investigated the explanatory power of m, Q, aspect

ratio, and phylogenetic group to account for the variation in
Ue (Figure 2). Mass accounted for only a small fraction of the
variation in flight speed while, as expected, speed was much
more closely correlated with wing loading. There was a
significant positive correlation between Ue and aspect ratio,
but aspect ratio provided no improvement of general linear
models (based on Akaike information criterion [AIC] [17])
when combined with Q or phylogenetic group.
A most potent factor to account for the variation in Ue was

phylogenetic group; species of the same group tended to fly at
similar characteristic speeds. The groups including birds of
prey and herons had on average slow flight speeds for their
mass and wing loading, while the average speed for groups
including songbirds and shorebirds fell above the overall
scaling lines (Figure 1). Main phylogenetic group alone
accounted for a substantial proportion of the variation in
Ue (adjusted R2¼ 0.55), and a general linear model including
both Q and phylogenetic group was the most satisfactory
model according to AIC (with adjusted R2¼ 0.64; Figure 2).
Our estimates of the explanation provided by the phylo-

genetic component, according to Figure 2, are likely to be
conservative because of the broad grouping across the entire
modern bird phylogeny. If tighter monophyletic groups at the
family level were used (20 phylogenetic groups), phylogenetic
group accounted for a fraction as high as 0.68 (adjusted R2;
F19,118¼ 16.4, and p , 0.001) of the variation in Ue, and for a
model including both phylogenetic group and Q this fraction
increased to 0.71 (adjusted R2; F20,108 ¼ 16.4, and p , 0.001).
However, these models had positive DAIC-values (þ8.1 and
þ28.8, respectively) in relation to the best model in Figure 2
and were thus less satisfactory when considering fit and
complexity in combination [17].

Discussion

Two main results emerged from our analyses; (1) that flight
speeds among bird species scaled significantly differently with
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Author Summary

Analysing the variation in flight speed among bird species is
important in understanding flight. We tested if the cruising speed of
different migrating bird species in flapping flight scales with body
mass and wing loading according to predictions from aerodynamic
theory and to what extent phylogeny provides an additional
explanation for variation in speed. Flight speeds were measured
by tracking radar for bird species ranging in size from 0.01 kg (small
passerines) to 10 kg (swans). Equivalent airspeeds of 138 species
ranged between 8 and 23 m/s and did not scale as steeply in
relation to mass and wing loading as predicted. This suggests that
there are evolutionary restrictions to the range of flight speeds that
birds obtain, which counteract too slow and too fast speeds among
bird species with low and high wing loading, respectively. In
addition to the effects of body size and wing morphology on flight
speed, we also show that phylogeny accounted for an important
part of the remaining speed variation between species. Differences
in flight apparatus and behaviour among species of different
evolutionary origin, and with different ecology and flight styles, are
likely to influence cruising flight performance in important ways.



mass and wing loading than predicted from basic aerody-
namic principles and (2) that phylogenetic group contributed
in a highly significant way to explain the considerable
variation in bird flight speeds that remained, even after the
biometrical dimensions of the bird species had been taken
into account.

Scaling of Flight Speed
The scaling exponents fell below predicted values for both

of the tested relationships, for Ue versus m as well as Ue versus
Q. Predicted scaling exponents were based on the assump-
tions of geometrical and dynamical similarity. Could devia-
tions from one or both of these assumptions explain our
results? Earlier studies have demonstrated that bird species
are not, on average, geometrically identical, but larger species
tend to have proportionately longer wingspans and larger
aspect ratios [2,5,10]. This was confirmed for the sample in
the present study with aspect ratio scaling significantly
positively to m as well as Q.

An overall scaling exponent of 0.14 for flight speed versus
body mass was calculated for theoretical flight speeds after
taking the slight positive allometry in wing size into account
for a large sample of bird species [9]. This fits well with the
corresponding exponent for observed speeds in this study,
making departure from geometrical similarity a likely

explanation for this result. The negative scaling exponent
of Ue in relation to m for the swans, geese, and ducks may be
an effect of a reduced flight power margin with increasing
size restricting the largest flyers like swans to fly close to the
minimum power speed rather than at the faster speed
associated with maximum effective lift-drag ratio [18,19].
Such constrained flight speeds for the largest flyers will also
have the effect of reducing the overall scaling exponents, thus
providing another contributory explanation for the observed
results in this study.
Dynamical similarity is reflected by Reynolds number,

which will differ between bird species in proportion to their
size (length dimension) and speed [20]. Reynolds number
shows a 15-fold range among the species in our sample
(ranging from approximately 25,000 to 375,000 based on
mean wing chord, S/b, as length measurement). Such a range
of Reynolds number may well be large enough to give rise to
significant departures from dynamical similarity. The main
expected consequence would be a reduced coefficient of
frictional drag for birds with large Reynolds number (i.e.,
large and fast birds) leading to an increased optimal cruising
speed among these species [14,20]. Thus, such a departure
from dynamical similarity is expected to show up as an
augmented scaling exponent for Ue versus m (and also for Ue

Figure 1. Bird Flight Speeds (Ue; m/s) Plotted in Relation to Body Mass (kg) and Wing Loading (N/m2) for 138 Species of Six Main Monophyletic Groups

The lines show the scaling relationships Ue¼ 15.9 3 (mass)0.13 and Ue¼ 4.3 3 (wing loading)0.31 as calculated by reduced major axis regression for all
species (Table 1). All axes are in logarithmic scale. Inserts show means (6 standard deviations) for the six main phylogenetic groups in relation to these
scaling lines. Species of the same group tend to fly at similar speeds, and phylogenetic group is an important factor to account for the variation in Ue.
doi:10.1371/journal.pbio.0050197.g001
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versus Q), rather than a scaling exponent lower than expected
as in this analysis.

In view of the opposite effects on scaling exponents of
departures from geometrical and dynamical similarity,
respectively [1], we conclude that only the departure from
geometric similarity can explain why the scaling exponent for
Ue versus m falls significantly below one-sixth among birds in
cruising migratory flight.

Do geometrical differences provide a sufficient explanation
also for the fact that the scaling exponent for Ue versus Q fell
clearly below the expected value of one-half? One way to
evaluate this is to calculate the scaling exponent for flight
speed versus span loading (m 3 g/b2, where b is wingspan).
Span loading is equivalent to wing loading divided by the
aspect ratio, and for birds differing in their geometric wing
shapes cruising flight speed is expected to scale most closely
with the square root of span loading (under geometrical
similarity flight speed is predicted to scale with the same
exponent of one-half versus both span loading and wing
loading) [5].

The scaling exponent for Ue versus span loading (species
level, exponent 0.36 with 95% confidence interval 0.31–0.40,
n¼ 129 and phylogenetic contrasts, exponent 0.37 with 95%
confidence interval 0.26–0.48, n¼ 17) exceeded that versus Q
(with corresponding exponents of 0.31 and 0.32, respectively,
Table 1) although still falling significantly below the predicted
value of one-half. This suggests that the geometrical differ-
ences explain part, but not all, of the discrepancy between
observed and expected scaling of Ue versus Q. Departure from
dynamical similarity will, in its most simple form (as reflected
by differences in Reynolds number), contribute to an
augmented rather than reduced scaling exponent in relation
to that predicted and can therefore not provide any useful
additional explanation in this case (see above). Still, dynam-
ical differences of other kinds may exist for reasons that are
notoriously difficult to predict for flapping flight. Future
studies of vortex patterns associated with flapping flight of
different species will be important to demonstrate possible
dynamical differences between species (see below).

We suggest that the unexpectedly small scaling exponent

for Ue versus Q may be the result of general evolutionary
forces acting to increase cruising speeds for species with the
lowest wing loadings and reduce speeds for species with the
highest wing loadings. The bird species in our analysis show
approximately a 10-fold difference in their range of Q (from
about 15 to 150 N/m2, Figure 1). With an observed scaling
exponent for flight speed of 0.31, this range of Q is associated
with a 2-fold (100.31¼ 2.0) difference in flight speed. However,
with a predicted scaling exponent of 0.5 we would have
expected more than a 3-fold difference in cruising speed
(100.5¼ 3.2). Given that birds with low Q (about 15 N/m2) fly at
a speed about 10 m/s (as observed), species with high Q (about
150 N/m2) would fly at 32 m/s according to the general
aerodynamic scaling rules. This may well be impracticably
fast and difficult to reconcile with flight performance in
situations of start, landing, flock manoeuvres, etc. Conversely,
given that birds with high Q fly at a speed about 20 m/s (as
observed), species with low Q would fly at only about 6 m/s
according to the general aerodynamic scaling rules. Such very
slow speeds will be disadvantageous because of sensitivity to
wind, vulnerability to predation, etc. Hence, it seems
reasonable to expect that there are evolutionary forces
operating to compress the range of cruising flight speeds
among bird species [5] and thus reducing the scaling
exponent for Ue versus Q. This compression of the range of
flight speeds is attained partly through general geometrical
differences between species (larger aspects ratios among
species with larger mass and wing loading, as discussed
above), but additional unknown mechanisms, perhaps asso-
ciated with different kinematics of flight or different muscle
operation between species, seem to be required to fully
explain the restricted range of flight speeds among bird
species.
Bounding flight seems to be a mode for small birds (mainly

passerines) to mitigate the costs of fast flight [1,2,10,21], while
flap-gliding, used by many raptors, is associated with a
reduction in cruising flight speed [21]. Both of these styles
of intermittent flight are used by species with low or
intermediate Q (Figure 1), and, having opposite effects on
flight speed, they are unlikely to provide a sufficient

Table 1. Allometric Relationships between Bird Flight Speed (Ue; m/s) and Body Mass (kg) and between Ue and Wing Loading (N/m2)

Relationship Sample n a 95% CI for a c 95% CI for c t p

Ue ¼ a 3 (mass)c All species 138 15.9 15.2–16.7 0.13 0.11–0.15 3.23 0.0015

All species with ntracks � 10 56 16.0 15.0–17.0 0.13 0.10–0.16 2.74 0.0083

All species with ntracks � 10, adjusteda 39 16.0 14.9–17.1 0.13 0.10–0.18 1.67 0.102

Phylogenetic contrasts 17 —b —b 0.12 0.07–0.16 2.09 0.052

Ue ¼ a 3 (wing loading)c All species 129 4.3 4.0–4.6 0.31 0.27–0.35 9.73 ,0.0001

All species with ntracks � 10 55 4.8 4.4–5.2 0.28 0.24–0.32 9.32 ,0.0001

All species with ntracks � 10, adjusteda 38 4.7 4.2–5.3 0.28 0.23–0.34 6.48 ,0.0001

Phylogenetic contrasts 17 —b —b 0.32 0.24–0.40 4.41 0.0004

Scaling relationships have been calculated by reduced major axis regression for logarithmic values of Ue, mass, and wing loading. Confidence intervals (CI) for the scaling coefficient (a)
and exponent (c) were calculated by bootstrapping (100,000 replicates) [33,34]. Test statistics for the difference between observed and predicted values of c are given by t� (degrees of
freedom¼ n� 1) and p-values. Predicted c for Ue versus mass and wing loading are one-sixth and one-half, respectively. The basis and procedure of the phylogentic contrast analysis are
presented in Protocol S2.
aUe adjusted for within-species variation in relation to vertical speed, tail- and cross wind components, and flock size.
bReduced major axis regressions for phylogenetic independent contrasts are calculated through origo, providing estimates of only the slope corrected for phylogentic dependence
(Protocol S2).
cScaling exponent.
doi:10.1371/journal.pbio.0050197.t001
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explanation for the low scaling exponent of Ue versus Q
among bird species as a whole.

Variability of Flight Speeds
Dimensional analyses have demonstrated that scaling

relationships between wing loading and total mass differ
significantly between different types of birds [5,10]. The
expected consequence of this is that wing loading will be a
more reliable predictor of flight speed, explaining more of
the variation in flight speeds among bird species than body
mass [1,5]. This expectation was fully confirmed in the
present study, with Q accounting for almost half of the
variation in Ue between species, while m explained only 12%
of this variation (Figure 2). However, our findings that Q still
left a large part of the variation in flight speed unexplained
and that phylogenetic group accounted for a significant
fraction of this remaining variation were unexpected from
earlier analyses based on theoretically calculated flight speeds
[5,10].

What are the causes for the discrepancies in flight speed
between phylogenetic groups? Differences in flight mode and
the use of bounding flight by many passerines have been
suggested as explanations for important group-specific
deviations from aerodynamic predictions of optimal bird
flight speeds [15]. We provisionally assigned, based on our
own field experience, the different bird species to three main

modes of flapping flight; (1) continuous flapping (e.g.,
shorebirds and ducks), (2) intermittent flapping with short
gliding phases (raptors, swifts, and swallows), and (3) bound-
ing flight (many but not all passerines use this mode of
intermittent flapping with phases of wing folding). Ue

differed significantly between flyers in these three categories
(p , 0.001, adjusted R2 ¼ 0.26, and F2,135 ¼ 25.1), and the
explanatory power of a model incorporating both flight mode
and Q was high (p , 0.001, adjusted R2 ¼ 0.60, and F3,125 ¼
64.5). This suggests that difference in flight mode is one
element affecting the characteristic cruising flight speeds
among phylogenetic groups.
Depending on their ecological life style and foraging, birds

are adapted to different aspects of flight performance, e.g.,
speed, agility, lift generation, escape, take-off, cost of trans-
port, and power [2,10]. These adaptations are likely to have
implications for the flight apparatus (anatomy, physiology,
and muscle operation) and the flight behaviour that may
constrain the cruising flight speed. The variations in power-
versus-speed relationships between different species [22] and
in muscle efficiency (conversion from metabolic power input
to mechanical power output) with mass and flight speed
[23,24] may be related to such differential complex flight
adaptations among birds. Constraints on flight speed may
also be associated with differences in fluid dynamics and
vortex patterns, hereto investigated only for a few species
[25–27]. Variable airspeeds may still be associated with high
power efficiency if accompanied with the proper variation in
wing stroke frequency and amplitude [28,29].
Species flying at comparatively slow cruising speeds

frequently use thermal soaring (raptors and storks), are
adapted for hunting and load carrying (raptors), or for take-
off and landing in dense vegetation (herons). Associated with
these flight habits they have a lower ratio of elevator
(supracoracoideus) to depressor (pectoralis) flight muscle
(particularly low among birds of prey) compared with
shorebirds and anatids [2]. We suggest that functional
differences in flight apparatus and musculature among birds
of different life and flight styles (differences often associated
with evolutionary origin) have a significant influence on the
birds’ performance and speed in sustained cruising flight.
Thus, our results strongly indicate that there is a diversity of
cruising flight characteristics among different types of birds
over and above the general scaling effects of mass and wing
loading that remains to be investigated and understood,
aerodynamically [30], kinematically [26,31], physiologically
[22], as well as ecologically [2,10].

Materials and Methods

Tracking radar measurements. Our main dataset, based on
tracking radar measurements in Sweden and the Arctic 1979–1999,
consists of 1,399 tracks of 102 identified species, with a mean track
time of 369 s (range 20–2,220 s). Altitudes ranged from sea level to
3,600 m. Number of tracks for each species ranged between one and
240, and mean Ue (with SD), vertical speed as well as information
about number of tracks, track time, and biometry data are given for
each species in Protocol S1.

An extensive additional dataset of equivalent airspeeds of
identified birds, obtained by similar tracking radar techniques, has
been published from the work of Bruno Bruderer and his research
group in Switzerland, Germany, Israel, and Spain [15]. Flight speed
data from tracks of birds in natural migratory flight (excluding
released birds and soaring flight) were incorporated into our analysis.
This additional dataset comprised 64 species, and with 28 species

Figure 2. Explanation of the Variation in Mean Flight Speeds (Ue; m/s)

among Bird Species by Different Combinations of Variables and Factors

The explanatory power (adjusted R2) of different General Linear Models
with significant independent variables (***, p , 0.001) is illustrated.
Phylogenetic group and wing loading emerge as key factors to account
for the variation in flight speed among bird species. General Linear
Models for all different combinations of body mass, wing loading, aspect
ratio, and phylogenetic group were calculated, except combinations
including both body mass and wing loading (because of the
interdependence between these variables). Complex models (including
combinations of variables) are presented only if the AIC improved from
models based on single independent variables [17]. This applied only to
the model incorporating both phylogenetic group and wing loading.
DAIC indicates the difference in AIC score from the most effective model
(with DAIC¼ 0). Test statistics were as follows (in parentheses) for model
including mass (F1,136¼ 20.0, p , 0.001), aspect ratio (F1,127¼ 28.6, p ,
0.001), wing loading (F1,127 ¼ 122.6, p , 0.001), phylogenetic group
(F5,132¼ 34.5), and phylogenetic group plus wing loading (F6,122¼ 39.6, p
, 0.001).
doi:10.1371/journal.pbio.0050197.g002
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shared between the two sets of data, the combined data added up to a
total of 138 species (Protocol S1). Mean Ue for the shared species were
not significantly different between the two sets (paired sample t-test, t
¼ 1.28, and p¼ 0.21), and we used weighted (according to the number
of tracks) overall mean Ue for these species in our analyses.

The bulk of flight speed data were measured 1979–1999 by tracking
radar studies at five sites in southern Sweden and on two expeditions
by icebreaker to the Arctic (for detailed methods see [19,32]). Targets
were identified to species and flock sizes through telescopes
simultaneously with radar registrations providing computer readings
of range, elevation, and bearing to the target usually every 10 s with
the radar in automatic tracking mode. All flight speeds have been
corrected for the influence of wind by subtraction of the wind vector
at the altitude where the birds were flying from the ground speed
vector of the birds. Winds were measured by releasing and tracking
hydrogen/helium-filled balloons carrying a radar reflector. Mean
airspeed, altitude, and vertical flight speed were calculated for each
track, excluding segments with a convoluted flight path. Altitudes
were corrected in relation to sea level by adding the altitude of the
radar antenna (10–185 m above sea level at the different sites), and
true airspeeds were reduced to equivalent airspeeds (Ue) referring to
sea level air density, according to the standard atmosphere change in
air density with altitude [14,15].

Scaling calculations and statistical analyses. Reduced major axis
regressions [16] for the scaling relationships between Ue and m and Q,
respectively, were performed in Matlab, with calculations of
confidence intervals by bootstrapping [33]. Calculations of reduced
major axis regressions based on phylogenetic independent contrasts
are further described in Protocol S2. We checked for possible bias
arising as a consequence of including species with only one or a few
tracks, by restricting the calculations to species with at least five or
ten tracks. The results remained the same, as exemplified for the
sample of 56 species with �10 tracks in Table 1. For 39 of the species
with �10 tracks, we could account for the within-species variation of
Ue in relation to vertical flight speed, head- and side-wind
components, and flock size by multivariate regression (statistically
significant influences were found in 26 of these 39 species;
unpublished data). Restricting the analysis to intercept values of Ue
for these 39 species (corrected to zero vertical speed, zero wind, and a
flock size of one from the multiple regression equations of significant
variables for each species) still gave the same scaling result (Table 1).
General Linear Models (Figure 2) [34] were calculated with Ue as
dependent variable. Logarithmic values were used for Ue, m, and Q.
Phylogenetic group and flight mode (limited analysis of this provi-
sionally estimated variable) were treated as fixed factors. Complex
models (different combinations or interactions of mass, aspect ratio,
and phylogenetic group or of wing loading, aspect ratio, and

phylogenetic group) were presented in Figure 2 only if AIC improved
from that of models with single independent variables [19].

Supporting Information

Protocol S1. Supplementary List of Flight Speeds and Biometry of
Bird Species

Found at doi:10.1371/journal.pbio.0050197.sd001 (173 KB PDF).

Protocol S2. Supplementary Information on Phylogenetic Tree,
Taxon Sampling, and Analysis of Independent Phylogenetic Con-
trasts

Found at doi:10.1371/journal.pbio.0050197.sd002 (29 KB PDF).
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